Personal Information

Full name Vinoth Ramalingam

Nationality Indian
Date of Birth 17/04/1989
Marital status Married

E-mail vino.phys@gmail.com

Professional Experience

Oct. 2017 – May 2022 Postdoctoral Fellow

KAUST Solar Center | Physical Science and Engineering Division

King Abdullah University of Science and Technology (KAUST) | Saudi Arabia

From June 2022 Energy for Future (E4F) Fellow

Department of Chemical and Process Engineering | University of Strathclyde, UK

Education

2012 – 2017 **Ph.D. in Physics**

Department of Physics | SRM Institute of Science and Technology, India

Thesis Title: Graphene Based Nanocomposites for Energy Conversion and Environmental

Remediation Applications

2011 – 2012 M.Phil. in Physics (Grade: Distinction with 87.5 %)

Department of Physics | Bharathidasan University, India

2009 – 2011 M.Sc. in Physics (Grade: Distinction with 87 %)

Department of Physics | Bharathidasan University, India

2006 – 2009 B.Sc. in Physics (Grade: Distinction with 87 %)

Department of Physics | Bharathidasan University, India

Fellowships and Awards

January 2022 "Energy for Future (E4F) Fellowship Award"-Horizon 2020 MSCA COFUND Program 2022-2023

(Coordinated by Fundación Iberdrola España)

Department of Chemical and Process Engineering-University of Strathclyde, UK

Imperial College London, UK (3 months secondment)
Iberdrola España, Spain (3 months industrial secondment)

February 2017 Best Poster Award in CNG-NCNN'17 National Conference

2012 – 2016 Research Fellow in DST-SERB Fast Track Research Project Funded by Department of Science and

Technology, Govt. of India (Funded Fellowship Rs. 9, 21,600/-)

Aug. 2016 — Sep. 2016 Sakura Exchange Program in Science administered by Japan Science and Technology Agency and

visited Shizuoka University, Japan

June 2011 JOINT-CSIR-UGC-NET examination for lectureship in Physics (Prestigious award to gain an eligibility

as an Assistant Professor for Government Universities in India)

April 2011 University **3**rd **Rank Holder** in M.Sc. Physics (Among 138 colleges)

March 2014 Best Oral Presentation Award in NCHSM 2014 National Conference

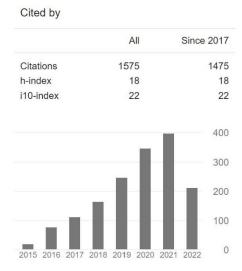
Research Experience and Training

My primary research interests are directed towards development of various nanomaterials and devices for important energy conversion applications including water splitting to clean hydrogen production, CO₂ reduction and N₂ reduction into value-added chemicals and fuels. During my Ph.D., I have worked extensively on the designing of graphene supported various nanocomposites for heterogeneous photo-catalysis (ACS Appl. Energy Mater, 2018, 1, 1913; J. Mater. Chem. A, 2017, 5, 384; PCCP 2016, 18, 5179; Nanoscale, 2015, 7, 7849). In my current Postdoctoral position at KAUST, my research work aimed to prepare highly efficient metal based catalysts, single atom catalysts and oxide derived metal-based catalysts for both electrochemical and photoelectrochemical water splitting, CO₂ reduction and N₂ fixation. For example, I have studied the metal-support interaction between single atomic Ruthenium and 2D MXene support for hydrogen evolution reaction (Advanced Materials 2019, 31, 1903841). In addition, recently I have developed gold nanoparticles decorated graphitic carbon nitride catalyst for N₂ fixation to ammonia synthesis with 65% Faradaic efficiency (Advanced Materials 2021, 33, 2100812). I have also involved in the collaborative research project with SABIC industry in which I have focused on the electrocatalytic water splitting to hydrogen production (ACS Energy letters 2019, 4, 2712–2718). Recently, I have completed two important projects on CO₂ reduction entitled "CO₂ reduction into formate using atomic bismuth nanosheets", "Copper alloy catalyst for CO₂ reduction into long chain hydrocarbon products" which will be submitted to the journal soon. I have hands-on experience in various vacuum deposition tools such as ALD, PE-CVD, Sputter, and e-beam evaporator. I also have experience in wet chemical synthesis, thermal synthesize processes to prepare various nanomaterials, experience in electrochemistry, reactor design with flow cell technology, Gas chromatography analysis, and NMR.

Patents

- 1. <u>Vinoth Ramalingam</u>, Hui-Chun Fu, Chun-Ho Lin and Jr-Hau He, Single Atom Catalyst Having a Two Dimensional Support Material, U.S. Patent (*Publication number: US-2022-0111358-A1*).
- 2. Hui-Chun Fu, *Vinoth Ramalingam*, Purushothaman Varadhan and Jr-Hau He, Solar Cell with MXene Electrode, U.S. Patent (*Publication number:* US-2022-0077329-A1)
- Karthik Peramaiya, <u>Vinoth Ramalingam</u> and Kuo-Wei Huang, Gold Decorated Porous Carbon Nitride Catalyst for Photoelectrochemical Nitrogen Reduction, U.S. Patent (*Application No. 63/231, 337*) (2021).

Publications in Internationally Peer Reviewed Journals


- Merfat Alsabban, Mathan Kumar Easwaran, Wandi Wahydi, Xiulin Yang, Karthik Peramaiah, <u>Vinoth Ramalingam</u>, Mohamed Hedhili, Xiaohe Miao, Udo Schwingenschlögl, Lain-Jong Li, Vincent Tung, Kuo-Wei Huang*, Unusual Activity of Rationally Designed Cobalt Phosphide/Oxide Heterostructure Composite for Hydrogen Production in Alkaline Medium, ACS Nano, 16, 3, 3906–3916 (2022).
- 23. Karthik Peramaiya*, <u>Vinoth Ramalingam</u>* (* joint first author), Merfat M. Alsabban, Vincent Tung, Kuo-Wei Huang* and Jr-Hau He*, Optically and Electrocatalytically Decoupled Si Photocathode with Porous Carbon Nitride Catalyst for Nitrogen Reduction Over 61.8% Faradaic Efficiency, *Advanced Materials*, 33, 2100812 (**2021**) (citations 5)
- 22. Jing Wang, Tao Feng, Jiaxin Chen, <u>Vinoth Ramalingam</u>, Zhongxiao Li, Daniel Manaye Kabtamu, Jr-Hau He*, Xiaosheng Fang*, Electrocatalytic Nitrate/Nitrite Reduction to Ammonia Synthesis using Metal Nanocatalysts and Bio-inspired Metalloenzymes, *Nano Energy*, 86, 106088 (2021) (citations 10)
- 21. <u>Vinoth Ramalingam</u>, Purushothaman Varadhan, Hui-Chun Fu, Hyunho Kim, Daliang Zhang, Shuangming Chen, Li Song, Ding Ma, Yun Wang, Husam N. Alshareef*, and Jr-Hau He*, Heteroatom-Mediated Interactions between Ruthenium Single Atoms and an MXene Support for Efficient Hydrogen Evolution, *Advanced Materials*, 31, 1903841 (2019) (citations 164)
- 20. Hui-Chun Fu[#], <u>Vinoth Ramalingam</u>[#] (* joint first author), Hyunho Kim, Chun-Ho Lin, Xiaosheng Fang*, Husam N. Alshareef*, and Jr-Hau He*, MXene Contacted Si Solar Cells with 11.5% Efficiency, *Advanced Energy Materials*, 9, 1900180 (2019) (selected as a Frontispiece) (citations 117)
- 19. Abeer Alarawi*, <u>Vinoth Ramalingam</u>* (* joint first author) and Jr-Hau He*, Recent Advances in Emerging Single Atom Confined Two-Dimensional Materials for Water Splitting Applications, *Materials Today Energy*, 11, 1-23 (2019) (highly cited article) (citations 130)

- M. A. Khan, Purushothaman Varadhan, <u>Vinoth Ramalingam</u>, Hicham Idriss*, Jr-Hau He*, Importance of O₂ Measurements During Photoelectrochemical Water-Splitting Reactions, *ACS Energy Letters*, 4, 2712–2718 (2019) (highly read article, collaborative project with SABIC industry) (citations - 17)
- 17. Abeer Alarawi[#], <u>Vinoth Ramalingam</u>[#] ([#]joint first author), Hui Chun Fu, Purushothaman Varadhan, Rusen Yang, Jr Hau-He^{*}, Enhanced Photoelectrochemical Hydrogen Production Efficiency of MoS₂-Si Heterojunction, *Optics Express*, 27, A352-A363 (2019) (citations 76)
- 16. N. Naresh, P. Karthik, <u>Vinoth Ramalingam</u>, C. Muthamizhchelvan, B. Neppolian, Tailoring Multi-metallic Nanotubes by Copper Nanowires with Platinum and Gold via Galvanic Replacement Route for the Efficient Methanol Oxidation Reaction, *Electrochimica Acta*, 282, 792-798 (2018) (citations 19)
- 15. P. Karthik, <u>Vinoth Ramalingam</u>, Z. Peng, W. Choi, E. Balaraman, and B. Neppolian, π-π Interaction Between Metal-Organic Framework and Reduced Graphene Oxide for Visible Light Photocatalytic H₂ Production, **ACS Applied Energy Materials**, 1,1913 –1923 (**2018**) (citations 92)
- Vinoth Ramalingam, S. G. Babu, V. Bharti, S. V. Bhat, C. Muthamizhchelvan, P. C Ramamurthy, V. Gupta, C. Sharma, D. K Aswal, M. Navaneethan, Y. Hayakawa and B. Neppolian, Ruthenium based Metallopolymer Grafted Reduced Graphene Oxide as a New Hybrid Solar Light Harvester in Polymer Solar Cells, Scientific Reports, 7, 43133 (2017) (citations 48)
- 13. <u>Vinoth Ramalingam</u>, P. Karthik, K. Devan, B. Neppolian and M. Ashokkumar, TiO₂-NiO p-n Nanocomposite with Enhanced Sonophotocatalytic Activity under Diffused Sunlight, *Ultrasonics Sonochemistry*, 35, 655–663 (**2017**) (citations 70)
- 12. <u>Vinoth Ramalingam</u>, S. Ganesh Babu, R. Ramachandran and B. Neppolian, Bismuth Oxyiodide Incorporated Reduced Graphene Oxide Nanocomposite Material as an Efficient Photocatalyst for Visible Light Assisted Degradation of Organic Pollutants, *Applied Surface Science*, 418, 163-170 (2017) (citations 37)
- 11. P. Karthik, <u>Vinoth Ramalingam</u>, P. Selvam, E. Balaraman, M. Navaneethan, Y. Hayakawa, and B. Neppolian, Visible-Light Active Catechol-Metal Oxide Carbonaceous Polymeric Material for Enhanced Photocatalytic Activity, *Journal of Materials Chemistry A*, 5, 384-396 (2017) (citations 54)
- R. Rameshbabu, <u>Vinoth Ramalingam</u>, M. Navaneethan, Y. Hayakawa B. Neppolian, Fabrication of Cu₂MoS₄ Hollow Nanotubes with rGO sheets for the Enhanced Visible Light Photocatalytic Performance, *CrystEnggComm*, 19, 2475 – 2486 (2017) (citations - 26)
- R. Rameshbabu, <u>Vinoth Ramalingam</u>, M. Navaneethan, S. Harish, Y. Hayakawa, B. Neppolian, Visible Light Responsive Cu₂MoS₄ Nanosheets Incorporated Reduced Graphene Oxide for Efficient Degradation of Organic Pollutant, *Applied* Surface Science, 418, 128 – 137 (2017) (citations - 17)
- 8. P. Gokul, <u>Vinoth Ramalingam</u>, B. Neppolian, S. Anandhakumar, Binary Metal Oxide Nanoparticle Incorporated Composite Multilayer thin Films for Sono-photocatalytic Degradation of Organic Pollutants, *Applied Surface Science*, 418, 119 127 (2017) (citations 12)
- Vinoth Ramalingam, Indrajit Patil, A. Pandikumar, Bhalchandra Kakade, Huang Nay Ming, D. D. Dionysiou, and B. Neppolian, Synergistically Enhanced Electrocatalytic Performance of N-doped Graphene Quantum Dots Decorated Three-dimensional MoS₂-Graphene Nanohybrid for Oxygen Reduction Reaction, ACS Omega, 1, 971–980 (2016) (citations 50)
- Vinoth Ramalingam, P. Karthik, C. Muthamizhchelvan, B. Neppolian and M. Ashokkumar, Carrier Separation and Charge Transport Characteristics of Reduced Graphene Oxide Supported Visible-Light Active Photocatalysts, *Physical Chemistry Chemical Physics*, 18, 5179-5191 (2016) (citations - 69)
- Vinoth Ramalingam, SG Babu, D Bahnemann, B Neppolian, Nitrogen Doped Reduced Graphene Oxide Hybrid Metal Free Catalyst for Effective Reduction of 4-Nitrophenol, Science of Advanced Materials, 7, 1443-1449 (2015) (citations -27)

- S. Ganesh Babu, <u>Vinoth Ramalingam</u>, B. Neppolian, Dionysios D. Dionysiou and M. Ashokkumar, Diffused Sunlight Driven Highly Synergistic Pathway for Complete Mineralization of Organic Contaminants using Reduced Graphene Oxide Supported Photocatalyst, *Journal of Hazardous Materials*, 30, 83 – 92 (2015) (citations - 105)
- 3. S. Ganesh Babu, *Vinoth Ramalingam*, Surya Narayana, Detlef Bahnemann and B. Neppolian, Reduced Graphene Oxide Wrapped Cu₂O Supported on C₃N₄: An Efficient Visible Light Responsive Semiconductor Photocatalyst, *APL Materials*, 3, 104415 (2015) (citations 60)
- 2. P. Karthik, <u>Vinoth Ramalingam</u>, S. Ganesh Babu, M. Wen, T. Kamegawa, H. Yamashita and B. Neppolian, Synthesis of Highly Visible Light Active TiO₂-2-Naphthol Surface Complex and its Application in Photocatalytic Chromium (VI) Reduction, *RSC Advances*, 5, 39752–39759 (2015) (citations 37)
- S. Ganesh Babu, <u>Vinoth Ramalingam</u>, D. Praveen Kumar, M. V. Shankar, H L. Chou, K. Vinodgopal and B. Neppolian, Influence of Electron Storing, Transferring and Shuttling Assets of Reduced Graphene Oxide at the Interfacial Copper Doped TiO₂ p-n Heterojunction for Increased Hydrogen Production, *Nanoscale*, 7, 7849 – 7857 (2015) (citations - 152)

CITATIONS (Google Scholar)

https://scholar.google.com/citations?hl=en&user=eApCA4YAAAAJ&view_op=list_works&sortby=pubdate

Collaboration

 Collaborations with researchers from Griffith University, University of Wisconsin, Imperial College London, CityU-Hong Kong, USTC, SRM University, IISER-India.

Editor and Reviewer

- Review Editor in Frontiers in Materials | Carbon-Based Materials journal (https://loop.frontiersin.org/people/1231517/overview)
- Frequent reviewer for the following international journals: Journal of Catalysis, ACS Omega, International Journal of Hydrogen Energy, Ultrasonics Sonochemistry, Applied Surface Science, Advanced Powder Technology, Chemosphere and Environmental Research

Supervision and Mentoring Activities

Project: MoS₂ catalyst for water splitting, Student: Abeer Alarawi (Ph.D) KAUST

Project: MXene for energy conversion application, Student: Hui Chun Fu (Ph.D) KAUST

Project: Graphene supported semiconductor photocatalyst for hydrogen production, <u>Student</u>: Aakash Watts (B.Tech), SRM Institute of Science and Technology

Project: Graphene-TiO2/NiO sonophotocatalyst, Student: Devan (M.Sc), Madras Christian College

Certificate Courses

- 1. **Vinoth Ramalingam**, Certificate course on "Fundamentals of Project Management Course" at KAUST, 6 to 7 Dec. 2017.
- Vinoth Ramalingam, Certificate course on "Materials Characterization Technique" at Indian Institute of Technology (IIT) Madras, India, 16-19 Dec. 2013.

Presentations in International and Domestic Peer Reviewed Conferences

- <u>Vinoth Ramalingam</u> and Jr-Hau He, Contributed Talk at International Conference on Materials for Advanced Technologies (ICMAT), MRS Singapore, "MXene 2D for Energy Applications" Marina Bay Sands, Singapore, June 23 to 28, 2019.
- 2. <u>Vinoth Ramalingam</u> and Jr-Hau He, KAUST Catalysis Center Conference entitled "New Challenges in Heterogeneous Catalysis" January 29 to 31, 2018.
- 3. <u>Vinoth Ramalingam</u> and Neppolian Bernaurdshaw, Chennai Nanogathering 2017 National Conference on Nanomaterials & Nanobiotechnology (CNG-NCNN'17), University of Madras, Guindy Campus, 7-8 February 2017 (Best Poster Award)
- 4. <u>Vinoth Ramalingam</u> and Neppolian Bernaurdshaw, Fourth International Conference on Advanced Oxidation Processes, AOP-2016, BITS Campus, GOA, INDIA during 17-20 December 2016.
- 5. <u>Vinoth Ramalingam</u> and Neppolian Bernaurdshaw, National Conference on Science and Technology for Indigenous Development in India (NCST-IDI 2015) organized by Indian Science Congress-Chennai Chapter in Association with SRM University, Kattankulathur, Chennai during 26-18 November 2015 (Best Poster Award)
- 6. <u>Vinoth Ramalingam</u> and Neppolian Bernaurdshaw, International Conference on Advances in Energy Research-2015 (ICAER 2015) which was held at IIT Mumbai during 15-17 December 2015.
- 7. <u>Vinoth Ramalingam</u> and Neppolian Bernaurdshaw, International Conference on Nanoscience and Nanotechnology (ICONN-2015), SRM University, Kattankulathur, Chennai, India, 4-6 February 2015.
- 8. <u>Vinoth Ramalingam</u> and Neppolian Bernaurdshaw, National Conference on Hierarchically Structured Materials (NCHSM 2014), SRM University, Ramapuram Campus, Chennai, 24-25 March 2014 (Best Oral Presentation Award).
- 9. <u>Vinoth Ramalingam</u>, "One week Workshop on Sustainable Energy Conversion and Storage Devices" organized by SRM Research Institute, SRM University, Kattankulathur, Chennai, 2-8 September 2013.

Outreach Activities

- -Frequent presenter for KAUST Solar Centre Peer Led Seminar
- -Handled our lab group webpage (regularly posting contents such as news, publications and group activities)

14 Aug. 2018 -Chairperson for KAUST Solar Centre Peer Led Seminar